
WHITE PAPER

The S3CUREC4M
Project: Vulnerability
Research in Modern
IP Video Surveillance
Technologies

About
Nozomi Networks
Labs

Nozomi Networks Labs is dedicated to reducing cyber risk for

the world’s industrial and critical infrastructure organizations.

Through its cybersecurity research and collaboration with

industry and institutions, it helps defend the operational

systems that support everyday life.

The Labs team conducts investigations into industrial

device vulnerabilities and, through a responsible

disclosure process, contributes to the publication of

advisories by recognized authorities.

To help the security community with current threats, they

publish timely blogs, research papers and free tools.

The Threat Intelligence and Asset Intelligence services

of Nozomi Networks are supplied by ongoing data

generated and curated by the Labs team.

To find out more, and subscribe to updates, visit

nozominetworks/labs

https://www.nozominetworks.com/products/threat-intelligence/
https://www.nozominetworks.com/products/asset-intelligence/
https://www.nozominetworks.com/labs/

Table of Contents

1. Assessing the Security of Modern IP Video Surveillance Technologies	 4
1.1 Introduction 	 4

1.2 Supply Chain Vulnerabilities on Embedded Devices 	 5

1.3 Assessing Vendor Maturity	 6

2. Hardware Analysis and Firmware Extraction Techniques	 7
2.1 Introduction 	 7

2.2 Flash Memories Packages 	 7

2.3 Memory Dumping Procedures – SOP and WSON 	 8

2.4 Extracting Firmware from Devices That Don’t Support Flashrom	 12

2.5 Connecting to a UART Port 	 15

2.6 JTAG Testing and Analysis 	 17

3. The Problem of Firmware Observability	 21
3.1 Introduction 	 21

3.2 Transparent Design: Axis Companion Recorder 4CH NVR	 21

3.3 Decrypting the Dahua Technology DHI-ASI7213X-T1 Face Recognition Access Controller	 23

3.4 From Zero to Debugger: Annke N48PBB NVR	 30

4. The Software Attack Surface 	 34
4.1 Introduction 	 34

4.2 Management Interfaces 	 35

4.2.1 Web Management Interface	 35

4.2.2 Remote Console	 37

4.3 Services Supporting Remote Applications 	 37

4.3.1 Dahua DVRIP 	 38

4.4 P2P 	 38

4.4.1 Reolink P2P Vulnerabilities	 39

4.4.2 ThroughTek P2P Vulnerabilities	 39

4.4.3 P2P Deployment in Corporate Networks	 39

4.5 Cloud Video Surveillance	 40

4.6 Discovery Services	 40

4.6.1 Hikvision	 40

4.6.2 Axis 	 42

5. Conclusion	 43
6. References and Further Reading	 44

4
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

1.1 Introduction

IP video surveillance systems are likely the most common

embedded devices in corporate networks. In 2020, the value

of the worldwide video surveillance market surpassed $45

billion USD and by 2025 is expected to grow to $75 billion

USD.1 The infrastructure sector—including transportation,

city surveillance, public places and utilities—is expected to

have the highest growth during that period. One estimate

indicates that by the end of 2021, more than a billion IP

cameras will be installed worldwide.2

Surveys of internet-accessible video surveillance systems

manufactured by the most prominent vendors reveal millions

of devices directly reachable through a direct connection.

The general public might associate these internet-accessible

devices with incidents involving IoT botnets, but video

surveillance systems also represent a strategic target for

advanced attackers aiming to compromise a specific target.

IP video surveillance systems are typically composed of a set

of IP cameras, access control devices, and Network Video

Recorders (NVR), where the audio/video stream produced by the

cameras is stored, in addition to an application used to access

the recordings. Some alternative solutions replace the NVR role

with a cloud application for ease of use and better accessibility.

We present a set of analyses that can be performed before

deploying the system on a network. We also present a set

of CVE vulnerabilities we have identified and announced as

part of this ongoing research project.

Other products solve the remote accessibility issue through

a mechanism called Peer-to-Peer (P2P), which should not

be confused with traditional peer-to-peer protocols such as

BitTorrent. A P2P solution bridges the NVR deployed within

a network with remote clients that want to access the

audio/video content through the internet.

Easily accessible firmware images are central to assessing

the security posture of a device. Unfortunately, some

vendors actively obstruct this process, an approach that

is harmful to end users and to any necessary analysis. In

order to inspect firmware, we first discuss the techniques

for obtaining binary code directly from hardware in chapter

2. In some products, firmware is not available for download

from the device. Other vendors may distribute encrypted or

obfuscated images, though the binary extracted from the

device is not encrypted. Either way, firmware dumping is

often an essential process to begin the assessment.

Even once a firmware image has been obtained, the

executables implementing the services exposed by a device

cannot always be freely inspected. Chapter 3 investigates

the problem of firmware observability and presents examples

of the steps required to analyze the binaries of three different

products. We compare a vendor that in our opinion sets the

standard for transparency with asset owners, with other

vendors that try to block users from inspecting the software

that will be running in their networks. In the latter case, we can

still successfully unpack the firmware despite the limitations.

Chapter 4 discusses the most common attack surfaces

found in IP surveillance systems: management interfaces,

services that support remote applications,P2P, cloud

video surveillance systems, and discovery services. It also

presents some of the vulnerabilities recently discovered

by Nozomi Networks Labs, as well as major incidents that

concerned those devices.

1. Assessing the Security of Modern
IP Video Surveillance Technologies

This white paper documents Nozomi

Networks' own efforts to study a wide

range of video surveillance products

in what we are calling the S3CUREC4M

Project. It provides security analysts and

researchers with a technical framework

to help assess the security posture of

an IP video surveillance system.

5
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

1. Assessing the Security of Modern IP Video Surveillance Technologies

1.2 Supply Chain Vulnerabilities on Embedded Devices

The firmware image of a typical embedded device is

composed of a series of software components packaged

together in a single deliverable. These components can

either be provided by a commercial software developer,

taken from an open-source project, or developed in-house

by the vendor.

This process can be recursive, since a component

purchased from a commercial software developer is

potentially composed of other components originating

from third-party developers. More generally, the

dependency graph of the software stack that runs on a

modern device is quite complex. It’s reasonable to assume

that very few vendors are aware of the complete software

supply chain underpinning their products.

High risk vulnerabilities affecting components at different

layers of the stack have emerged recently, requiring a

thorough understanding of the software supply chain of an

embedded device. This doesn’t mean that the risk wasn’t

there to begin with, but rather that the security community is

only now fully understanding the magnitude of the problem.

Recent high-profile vulnerability disclosures have made it

clear to security analysts and researchers that deploying

networked devices, whose firmware cannot be inspected,

is simply not acceptable. Ripple20, for example, affected a

TCP/IP stack that was relatively unknown.3

In the case of Ripple20, several vendors weren’t even aware

that their products were embedded in the vulnerable TCP/

IP stack. Other vendors were found to be shipping very

old versions of the vulnerable library, as the contract with

the developers had not been renewed. The net result was

that end users were left in the dark, unsure if the devices

powering their organizations were vulnerable or not.

Network observability is a requirement for this type of

situation, as it provides the baseline tools to understand

what’s happening on the network at a fundamental level.

With Ripple20, network traffic analysis makes it possible to

identify the devices relying on that specific TCP/IP stack and

to warn asset owners if an exploitation attempt is detected.

Firmware image analysis is a complementary approach

to network observability, allowing asset owners to further

refine their understanding of a device software stack.

Let’s suppose that a device is vulnerable to the recent

CVE-2021-3781, a flaw in Ghostscript.4 Ghostscript is a

popular open-source interpreter for PostScript and PDF

files and is typically used in the background by software

components that perform some higher level tasks. By its

very nature, Ghostscript ends up somewhere down in the

software stack of an application and its use is not evident

to the end user.

Unless a firmware image can be freely inspected, an asset

owner has no way of knowing whether this vulnerable

software component is deployed in the network, other than

testing a proof of concept exploit against a device. This

latter approach is obviously subject to the availability of a

safe proof of concept, which is rarely the case.

https://nvd.nist.gov/vuln/detail/CVE-2021-3781

6
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

1.3 Assessing Vendor Maturity

For an asset owner, assessing a vendor’s maturity is

fundamental to understanding the security posture of its

products. This is particularly true for embedded devices

that expose a significant attack surface at the network level.

A vendor’s commitment to releasing security updates in

a timely manner is one of the first aspects to consider.

This could mean having a rough estimate of how often

firmware images are released or determining if the vendor

has specific emergency procedures in case a high-profile

vulnerability becomes known.

Another key check to perform before picking a product is

determining how long the vendor will provide security updates

for. Deploying a device with an unclear lifespan of security

updates is probably one of the most dangerous situations for

an asset owner, as it sets the stage for future incidents.

A further crucial element is the documentation of firmware

updates. Each release should be shipped with a description

of the patched vulnerabilities as well as documentation on

what new features have been inserted. A commonly accepted

standard for a software bill of materials is not available yet, but

vendors can produce this material in preparation for moving

to a format that is accepted industry-wide.

Another very important factor for asset owners is the

management of firmware updates for a fleet of devices.

Even if a vendor delivers security updates on time, if the

process of deploying the new firmware images doesn’t

scale, the net effect is that devices are still exposed for a

long window of time.

Platform hardening is an interesting proxy for how security-

focused and dependable a vendor really is. A company that

implements modern hardening techniques and is willing

to document these efforts for its customers gives a buyer

more confidence than a vendor that doesn’t apply this

defense in depth strategy.

While it’s true that no vendor is immune to security

vulnerabilities, the type of issues that affect a product is

another important measure of its maturity.

The recent hype surrounding supply chain vulnerabilities

has made the problem of hidden risks concealed in black

box networked products self-evident even to the public.

This paper elaborates why these types of products bring

unnecessary risks.

1. Assessing the Security of Modern IP Video Surveillance Technologies

7
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and
Firmware Extraction Techniques

Figure 1a - SOP package. Figure 1b - WSON package. Figure 1c - BGA package.

2.1 Introduction

2.2 Flash Memories Packages

As we’ve mentioned, unencrypted firmware images are not

always available. When this occurs, options for analysis are often

reduced to a black box interaction with the services exposed

to the users. This limitation prevents security researchers from

performing a complete and exhaustive assessment and is thus

not acceptable. For this reason, extracting firmware directly

from a device memory is becoming of paramount importance,

as it’s often the only way to obtain an unencrypted image.

Hardware analysis is not limited to static firmware

extraction. By leveraging debugging/logging ports,

such as UART or JTAG, it’s possible to interact with a live

device. While the former provides some basic interaction

capabilities, especially during the boot process, the latter

offers a complete hardware debugging environment.

By combining static firmware analysis with dynamic

interactions offered by UART or JTAG, researchers can

considerably improve their understanding of the attack

surface presented by the target.

The first step in the hardware analysis process is to extract

the firmware binary. If a vendor is not providing the image,

it is necessary to perform a dump directly from the memory

of the device. To do so, we first need to identify the flash

memory mounted among all the other components

soldered on the PCB of the device.

Every electronic component that needs to be installed on a

PCB has a hardware interface that allows it to be soldered

to the conductive pads of the PCB. There are different

types of PCB component packages. This section introduces

the three most common, which are usually found in PCB

mounted memory devices: SOP, WSON, and BGA.

This chapter provides an overview of

commonly used hardware analysis

techniques, including how to dump

the contents of packages used for

PCB-mounted flash memories, the

potentiality and usage of the UART

port, and JTAG debugging protocol.

8
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

The Small Outline Package (SOP) is the most common

component package, especially in small embedded devices.

Its standard form is a flat rectangular body, with leads

extending from two sides. The gull wing shape of the leads

allows solid footing during assembly to a PCB. This kind

of package facilitates the process of firmware dumping,

since the pins can be probed easily by grabbing them with

dedicated tools, aptly named grabbers.

The Very-Very-Thin Small-Outline No-Lead (WSON) package

is slightly less likely to be found on a PCB. While an SOP

package has leads extending from the chip, WSON uses

conductive pads. From a hardware analysis perspective,

extracting the memory content is more difficult, as the

grabbers cannot be used. Rather, some jumpers need to be

soldered, or the memory chip may need to be desoldered

from the PCB altogether.

The last package that is worth discussion is the Ball Grid

Array (BGA). It’s a type of surface-mount packaging used for

integrated circuits, which can provide more interconnection

pins than can be inserted in a dual in-line or flat package. In

contrast to SOP and WSON, a BGA package can use the whole

bottom surface of the device, instead of just the perimeter.

The connections of a BGA package are the most difficult

to probe, as they aren’t accessible from the top of the PCB.

Unless they are reachable from the back side of the PCB,

the only way to access the package pinout is to desolder

the memory from the PCB and insert a socket adapter.

Before we turn to the actual memory dumping process, it’s

worth highlighting that the memory chips may sometimes

need to be removed from the PCB, even if we can reach

their pins with grabbers or jumpers. This is due to a possible

back propagation of the power through the bus interface.

Depending on how the PCB has been designed, the

flash memory and CPU may share the same power line.

If this is the case, when the bus interface powers the

flash memory, it will also power on the CPU, which will in

turn begin communicating with the flash memory. This

process effectively blocks any other device from interacting

with the chip. Consequently, the component must be

desoldered from the PCB for the memory to be read.

2.3 Memory Dumping Procedures – SOP and WSON

As we’ve mentioned, different flash memory packages

require different approaches. In this chapter we’ll focus

on SOP and WSON packages, walking through the steps

required to read the content from those memories.

Figure 2 - PCB of the Annke N48PBB. The target SOP flash memory is highlighted with a red circle.

9
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

Our first example comes from the analysis of the Annke

N48PBB Network Video Recorder, whose PCB is shown in

Figure 2. We can spot an SOP-packaged flash memory among

the components installed on the PCB, highlighted with a red

circle. The label printed on the memory package identifies the

vendor name and the model: a Macronix MXIC MX25L12835F.

To begin the memory dump process, we start by analyzing

the flash memory datasheet to retrieve information about

the pinout, supported communication protocol, and

operating voltage.

Figure 3 shows part of the Annke N48PBB datasheet, which

notes that the memory comes in different packages. The

device embeds an 8-PIN SOP, for which a detailed pinout

description is provided. The operating voltage value can

also be retrieved from the pin description, which in this case

is 3V. Finally, the pinout description, in addition to specific

information found elsewhere in the datasheet, confirms that

the communication protocol supported by this memory is SPI.

Once all the necessary information has been acquired, the

next step is to understand which hardware and software

components are needed to read the memory content.

One of the most popular softwares used for this type of

operation is Flashrom. Flashrom is an open-source utility

for identifying, reading, writing, verifying and erasing

flash chips. It supports a huge set of flash chips, chipsets,

mainboards, PCI and USB devices, and various parallel/serial

port-based programmers.

The compatibility of the flash memory must then be

checked against a list of supported devices provided in

Flashrom documentation.5

Figure 3 - Datasheet detail of the information required for dumping memory content.

10
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

Figure 4 shows a section of the list of flash chips supported

by Flashrom, including the Macronix MXIC MX25L12835F

memory. This means that the content of our memory

can be read using Flashrom, together with a standard

bus interface that handles the communications between

Flashrom and the memory device. In our second example,

we’ll discuss a scenario where the flash chip is not

supported by Flashrom.

After gathering the hardware required to dump the

memory content, the next step is the setup and the wiring

of the bus interface.

There are two main ways to probe the pins of an SOP

packaged memory chip: the first uses a set of grabbers that

are connected like a clamp to the package pins (Figures 5a

and 5b), while the second leverages an SOP-SOIC test clip

to facilitate the probing, avoiding unintended shortcuts

between the grabbers (Figure 5c).

Figure 4 - Detail of the list of hardware supported by Flashrom. The Macronix MXIC MX25L12835F is

highlighted in red, indicating that it is supported by Flashrom.

Figure 5a - Grabber positioning. Figure 5b - Every flash chip pin probed

with a grabber.

Figure 5c - SOP test clip used

instead of grabbers.

11
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

After the grabbers or the SOIC-SOP clip have been properly

connected, a set of jumpers needs to be inserted to connect

the grabber to the bus interface. In this setup (Figure 6) an

Attify Badge bus interface has been adopted to manage the

communications between the flash memory and the PC

running Flashrom. Any other bus interface that supports the

SPI protocol could also be used.

Figure 3 shows the pinout of the flash chip under analysis.

From this schematic we can set up the proper connections

according to the pin configuration of the involved bus

interface. Notice that the RESET pin of the memory in

Figure 6 is left unconnected, as the bus interface does not

require the reset signal. Nevertheless, as a good practice,

a grabber needs to be connected to avoid unintended

contact between the RESET pin and other grabbers.

 The last step of this memory dump process consists of the

actual reading of the memory content.

Before launching Flashrom, which we’re using in this

example, it’s important to set two parameters: programmer

name and chip name.

The programmer name parameter depends on which bus

interface is being used. In this case, Attify Badge is based

on an FTDI chip communicating with the memory through

SPI protocol. In the Flashrom manual, the programmer

name for this kind of bus interfaces corresponds to

ft2232_spi:type=232H.

The chip name is the model of the flash memory, which can

be found in the Flashrom list of supported hardware. Figure

4 identifies the name of the chip we are reading from:

MX25L12835F/MX25L12845E/MX25L12865E.

The option that enables the setting of the programmer

name is -p, while the chip name is -c.

The complete Flashrom command will then be:

The -r option, on the other hand, tells Flashrom to perform

a reading operation. The output of this command will

eventually be a dump of the entirety of the flash chip’s

content, which will be saved in file image.bin.

Figure 6 - Wiring setup. An Attify Badge bus interface has been used to manage the SPI

communications between the flash memory and the PC running Flashrom.

flashrom -p ft2232_spi:type=232H -c MX25L12835F/

MX25L12845E/MX25L12865E -r image.bin

12
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

2.4 Extracting Firmware from Devices That Don’t Support Flashrom

In some hardware, the flash memory may have a WSON

package that is not supported by Flashrom. To provide a

complete overview of the techniques that allows security

engineers to dump firmware images from flash memories,

we present a second analysis where this is the case.

The target device is a Verkada D40 camera, whose PCB is

shown in Figure 7. The red circle highlights the flash memory,

which in this case is a HeYangTek HYF2GQ4UAACAE.

As in the previous example, the first step involves retrieving

useful information regarding the chip. Unfortunately, this

time very little information could be obtained, only voltage

and package type.

Furthermore, this chip was not found on the list of hardware

supported by Flashrom, making it unlikely that Flashrom

can be used to extract the content. It should be noted that

some officially unsupported flash memories are effectively

a re-branding of a compliant model, in which case Flashrom

will operate as expected.

Figure 7 - PCB overview of the Verkada D40 camera. A red circle highlights the flash memory.

13
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

After soldering some jumpers to the pad of the flash

memory, a reading test is performed, using the common

pinout for SPI WSON flash chips. Unfortunately, Flashrom

does not recognize the flash. At this point, only a dedicated

programmer would be able to read the memory content.

We can find a programmer that supports the content by

searching the internet - BeeProg2C by Elnec, with a WSON-

8 adapter.

To be able to read the memory content, the flash chip

needs to be desoldered from the Verkada D40 PCB with a

hot air desolder tool.

Figures 8a and 8b show the HeYangTek HYF2GQ4UAACAE

flash chip before and after being desoldered from the PCB.

After removing the chip, it is usually a good practice to

clean up both the flash chip pads and the PCB pads from

where the memory was desoldered.

A small amount of tin should also be put on the pads of the

memory chip, in order to ease the contact with the socket

adapter of the programmer.

Figure 8a - The HeYangTek HYF2GQ4UAACAE

mounted on the Verkada D40 PCB.

Figure 8b - The flash memory

desoldered from the PCB.

14
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

The BeeProg2C programmer (shown in Figure 9a) is very

easy to use. The memory chip only needs to be inserted

into a socket adapter (Figure 9b) and the programmer

connected to a PC running Windows.

At the startup of PG4UW software, the model of the

programmer and the flash chip must be specified (Figures

10a and 10b). Once this simple setup has been completed,

the content of the memory can be extracted (Figure 10c).

This process requires several minutes to complete, after

which the content of the memory will be stored in a buffer

that can be saved to any file specified by the user.

In the bottom right corner of PG4UW UI there is a small

table with the statistics of the dumping process, which

reports the number of reading successes and failures.

Failures can happen during the dumping process; if they do,

the reading process will need to be restarted.

Figure 9a - The BeeProg2C with the socket

adapter for WSON-8 memories.

Figure 9b - The HeYangTek HYF2GQ4UAACAE

flash chip positioned in the socket adapter.

Figure 10a - Programmer selection. Figure 10b - Flash chip selection. Figure 10c - Dumping procedure.

15
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

2.5 Connecting to a UART Port

Low level softwares, such as bootloaders, don’t usually

implement drivers for sophisticated communication

devices. Rather, they often employ simple interfaces that

provide a very basic communication functionality between

the user and the device.

The most common low level communication interface is

the Universal Asynchronous Receiver-Transmitter (UART).

A UART is a hardware device capable of establishing

asynchronous serial communications, where the data format

and the transmission speed are configurable. Data bits are

sent one by one, from least to the most significant, and are

organized in frames interleaved by a start and stop bit.

From an electrical point of view, the voltage level is

handled according to two main systems, RS-232 (12 volts)

and RS-485 (5 volts). Sometimes the UART system can

be implemented with a dedicated Integrated Circuit (IC),

but most of the time, it is embedded within the main

microprocessor. An evolution of UART, called USART, can

also handle synchronous transmissions.

Due to the simplicity of its communication interface, UART

is widely used in applications with hardware or software

constraints. By default, it’s the only communication

infrastructure for which U-Boot, one of the most common

bootloaders for IoT systems, has a standard support.

UART is leveraged for all communications between the

device and a possibly connected host PC, before the actual

firmware or kernel starts. It can be used not only to send

output from the board to the host PC, but also to receive

commands from the PC, allowing auditors to interact with

the boot process.

From a physical point of view, a UART connection is comprised

of four terminals: Ground (GND), Voltage in (VCC), Receive

(RX) and Transmit (TX). In many devices, VCC is not needed, as

UART hardware is already powered on by the device itself.

When looking for a serial port in a PCB, the search

should be focused on four-pins connectors. However, the

connector is often not mounted on the PCB and only four

aligned holes are left on the board.

Figure 11a - PCB of the Dahua DHI-ASI7213X-T1 thermal camera.

A red circle highlights the UART terminals.

Figure 11b - No connectors are

mounted, requiring one to be

soldered.

Figure 5c - JST cable

and connector.

16
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

The following example describes the connection to the

UART port and the reading of the boot information for a

Dahua DHI-ASI7213X-T1 thermal camera.

Figure 11a shows the Dahua thermal camera PCB, in which

UART terminals can be confirmed by labels printed on the

PCB. No connectors are soldered to the UART terminal holes.

There are two techniques that can be used to connect

the thermal camera to the PC through the UART. One

option is to solder a JST connector to the PCB and use

JST cables as a bridge between the PCB and the bus

interface. Another method is to solder four jumpers

directly on the terminal holes.

After setting up the connections for both the PCB and the

bus interface side, we can now open a console and connect

to the UART. In this setup, an Attify Badge was used as a

bus interface, while the common screen application was

the terminal for connecting to the UART port.

After understanding which command is reserved for

stopping U-Boot from booting the kernel, * in the case of

Dahua DHI-ASI7213X-T1, it’s finally possible to open a screen

and switch on the camera.

As shown in the listing above, we then get a shell to interact

with U-Boot information. In addition to being a good source

of information about both the device hardware and the

kernel, the UART can also be used to gather access to the

underlying operating system. For example, by modifying

specific environmental variables, it might be possible to

obtain a shell after the kernel has completed its startup.

System startup

allowed version 00000000, major=0, minor=0

device support otp.

Otp version is 0x00000000, Flash version is 0x00000000

Otp version is 0x00000000, Flash version is 0x00000000

UBOOT_commonSwRsaVerify run successfully!

U-Boot 2016.11-svn8097 (May 09 2020 - 02:27:46 +0800)hi3519av100

dhboot #

1

2

3

4

5

6

7

8

9

10

17
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

2.6 JTAG Testing and Analysis

The Joint Test Action Group (JTAG) is an industry standard

for verifying designs and testing PCBs after manufacture.

It was originally defined in the 80’s to tackle the problem of

testing integrated circuits and communication busses as

they were becoming faster and miniaturized. Since the old

analog probes were no longer effective for circuit testing

purposes, a new methodology had to be invented.

The key concept of JTAG is to move the testing infrastructure

from the outside to the inside of an integrated circuit. The

Intel i486 DX2 was the first microprocessor embedding a

complete JTAG-compliant scan chain.

A complete JTAG scan chain implemented within a System

on Chip (SoC) is shown in Figure 12. The JTAG standard

exposes five pins: Test Data In (TDI), Test Data Out (TDO), Test

Mode Select (TMS), Test Clock (TCK), Ground (GND), and an

optional Test Reset (TRST). Given this information, during the

analysis of the PCB, connectors with either four, five or six

pins should be the targets of an auditor.

TRST* (optional)

Debug / Emulation / Register

Core Logic

Programming / Register

Instruction / Register

Test Access Port
(TAP) Controller

1

Clock (TCK)

Control (TMS)

Data In (TDI) Data Out (TDO)

External
Connections

Boundary Scan Register Boundary Scan Cells

1

1

Figure 12 - The JTAG scan chain.

18
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

Figure 13 shows a detail of the back side of the Dahua DHI-

ASI7213X-T1 PCB. The label on the top left of the picture

identifies the six-pins above the STM32 as the interface

of a debug port. The fact that they are very close to the

STM32 microcontroller suggests that this is the debug port

for the STM32 itself. To understand which role each JTAG

terminal has, we need to consult the schematics of the

microcontroller and match the pinout using a multimeter.

Figure 13 - A six-pin JTAG connector. It is the debug port for the STM32 in Figure 14.

Figure 14 - The pinout schematic of the STM32F103C8 microcontroller.

19
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

In the datasheet of the STM32F103C8 microcontroller, the

following mapping of the JTAG is described:

	y TDI → PA15

	y TDO → PB3

	y TMS → PA13

	y TCK → PA14

	y TRST → PB4

With the use of a multimeter set in continuity mode, we

verified that the order from left to right is: GND, PB3, PB4,

PA13, PA14, PA15 (shown in Figure 14). Having gathered all

the information needed for the hardware setup, we can now

focus on software. We only need two applications to have a

functional debugging environment, OpenOCD and GDB.

OpenOCD is an open-source project that allows in-system

programming, boundary scan testing and debugging

for multiple MIPS and ARM systems. GDB can be run

simultaneously with OpenOCD, to better understand all

the instructions the CPU is executing and to investigate the

content of registers and the flash memory.

To kick off a debugging session, OpenOCD needs to be

started with this command:

sudo ./openocd -s ../tcl -f stm32.cfg

If the interface of choice is Attify Badge, stm32.cfg can be

obtained directly from Attify.6

The terminal output should resemble the following:

From the output of OpenOCD, it we can see that there are

three ports on listening:

	y TCP port 6666: for tcl connections

	y TCP port 4444: for telnet connections

	y TCP port 3333: for GDB connections

Open On-Chip Debugger 0.11.0-rc2

Licensed under GNU GPL v2

For bug reports, read

 http://openocd.org/doc/doxygen/bugs.html

Info : auto-selecting first available session transport "jtag". To override

use 'transport select <transport>'.

adapter speed: 15000 kHz

Info : Listening on port 6666 for tcl connections

Info : Listening on port 4444 for telnet connections

Info : Hardware version: 9.30

Info : VTarget = 2.605 V

Info : clock speed 15000 kHz

Info : JTAG tap: stm32.cpu tap/device found: 0x00000001 (mfg: 0x000

(<invalid>), part: 0x0000, ver: 0x0)

Info : starting gdb server for stm32.cpu on 3333

Info : Listening on port 3333 for gdb connections

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

20
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

2. Hardware Analysis and Approaches for Obtaining Firmware

To test if the setup is working properly, it is now possible to connect to the telnet server and trigger the reset procedure:

The actual debugging session can then be started with the

following command:

gdb extended-remote :3333

From now on, GDB can be used as it would in a normal

debug session.

The procedure described above is a general approach to

hardware debugging with OpenOCD and GDB, which can be

applied to any CPU or SoC and leverage any bus interface.

However, for STM-8 and STM-32 microprocessors, there is a

dedicated probe for hardware debugging and programming

called ST-Link. It can be used together with STMCube, the

IDE for STM microprocessors, and provides a very good and

intuitive GUI, enabling better and easier debugging sessions.

Telnet localhost 4444

Trying 127.0.0.1...

Connected to localhost.

Escape character is '̂]'.

Open On-Chip Debugger

>reset

JTAG tap: stm32.cpu tap/device found: 0x00000001 (mfg: 0x000

(<invalid>), part: 0x0000, ver: 0x0)

1

2

3

4

5

6

7

21
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware
Observability

3.1 Introduction

3.2 Transparent Design: Axis Companion Recorder 4CH NVR

Firmware observability is the ability of a customer or a third

party to freely inspect the binaries that implement the services

exposed by a given device. This analysis can take place statically,

for instance by using a disassembler to examine specific

executables, or at runtime while the target system is executing.

As there are many approaches to firmware distribution,

ranging from accessible to deliberately obfuscated, we

discuss three examples from different vendors and

their potential consequences for the security posture

of an organization.

Axis Communications is a video surveillance company

that adopts an open policy towards firmware inspection.

The Companion Recorder 4CH is a typical network video

recorder (NVR) which is managed through a web interface.

SSH access can be enabled through the management

interface and the device can be inspected at runtime.

In recent years, an emerging trend has

involved many vendors actively obfuscating

or encrypting firmware. Their goal is to block

any type of analysis other than a pure black

box interaction. In some cases, vendors even

describe these efforts as security driven.

Our experience tells us instead that the

opposite is true; it’s actually dangerous for

any organization of a given complexity to

deploy networked products that cannot

be easily analyzed.

Figure 15 - Enabling SSH access.

22
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

Firmware images can be freely downloaded from the Axis

website for analysis.7 The popular binwalk tool can be used

to unpack the images.

In the screenshot below, firmware version 9.80.2.2 is

extracted and the content of /usr/bin is listed. Further

analysis of specific executables is thus possible either

through an automated platform or manually.

Figure 16 - Root SSH access on the AXIS Companion Recorder.

Figure 17 - Firmware version 9.80.2.2. of the Axis NVR and content of the /usr/ bin.

23
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

3.3 Decrypting the Dahua Technology DHI-ASI7213X-T1 Face Recognition
Access Controller

DHI-ASI7213X-T1 is a face recognition access controller

which, among the details, can detect the temperature of

the person looking into the device. A web management

interface is available to configure the access controller. SSH

access can be enabled, but to our surprise, the credentials

set for the web interface don’t apply to the remote shell.

Our understanding is that SSH access is available only to

Dahua support, should the need arise.

Firmware can be downloaded from the vendor website, but

as you unpack the binary with Binwalk, you’ll notice that the

process does not proceed as expected. The tool successfully

extracts a series of uImage files, but the content of most of

these binaries is encrypted with a proprietary scheme. In

particular, the kernel and the partition images containing

the final executables are not accessible.

Figure 18 - The credentials set for the web interface of the DHI-ASI7213X-T1 do not apply to the remote shell.

24
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

We searched publicly available documentation to

understand if the vendor documented their approach

to firmware security. We eventually found a product

security white paper which explicitly states that firmware

is encrypted “to prevent reverse attacks by hackers.”8 We

believe that the opposite is actually true, namely that the

lack of an accessible firmware image harms asset owners

more than malicious actors. We then set off to analyze the

encryption scheme implemented in this product.

From the artifacts previously unpacked, the bootloader

stored in file dhboot.bin.img was found not be encrypted.

We then reverse engineered a considerable part of this

binary and eventually reached the function responsible for

decrypting the kernel.

Figure 19 - Encrypted ulmage files extracted from Dahua firmware.

Figure 20 - A Dahua white paper states that firmware is encrypted to prevent hacking.

25
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

The decryption scheme is based on AES-ECB with a key derived from the SHA256 of a hardcoded key (Figure 22).

Figure 21 - The function responsible for decrypting the kernel.

Figure 22 - Key derivation.

26
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

Since the decryption functions contained some customizations

on top of the block cipher and we didn’t want to waste

more time reimplementing the whole scheme, we opted

for an emulation-based approach and let the original code

perform the decryption for us.

As the addresses to which the bootloader expects to be

mapped are compatible with userspace memory layout, we

wrote a loader that would take the bootloader binary as the

input and map it at the correct address.

We then defined the function pointers for the decryption

routine we intended to emulate and set the corresponding

address within the mapped executable code.

Figure 23 - Bootloader binary mapping.

Figure 24 - Pointing encryption code to mapped locations.

27
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

Once the loader was ready, we ran it and decrypted the kernel successfully, as shown in Figure 25.

We tried the same procedure with the encrypted files

containing the device partitions, but the process was

unsuccessful. Since the kernel is executed right after

the bootloader, we continued our analysis by reverse

engineering the newly decrypted code.

As we determined at the end of the decryption process,

the kernel of this device is a Linux-4.9.37 with some

customizations. Its sheer size and complexity are such that

we had to resort to some heuristics to find the functions in

charge of decrypting the remaining images.

We looked for the constants used by AES as a starting

point. Once we could clearly define the boundaries of the

AES implementation, we looped through all the functions

that reference the block cipher algorithm.

Figure 25 - Successful kernel decryption through emulation.

28
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

We eventually located the same decryption routines that

we initially found in the bootloader. The caveat, though,

was that the key derivation function was not in proximity of

the decryption code. With some further analyses we also

identified the key derivation function and realized that the

encryption scheme for the partition is precisely the same

as the one used for the kernel. What differs is a simple

positional parameter.

This finding meant that we could simply tweak our

existing decryption tool and use it to decrypt the

remainder of the firmware.

Figure 26 - AES constants and references as found in kernel.

Figure 27 - Partitions decryption function as found in kernel.

29
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

We could finally run binwalk on the decrypted squashfs

image and access the firmware partitions statically. With

full access to the executable binaries, the usual analysis can

now be performed.

Figure 28 - Finishing the decryption Figure 29 - A decompiled function from executable “sonia.”

30
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

3.4 From Zero to Debugger: Annke N48PBB NVR

The Annke N48PBB is an NVR capable of showing and

recording the footage of up to eight Power over Ethernet

(PoE) IP security cameras. Like the Dahua access controller,

it exposes a web management interface which provides the

possibility of enabling SSH access. In this case, the credentials

of the admin account are accepted by the device; however,

it is only possible to obtain access to a restricted shell which

allows the execution of a limited set of commands.

None of the commands allowed out-of-the-box deeper access

to the OS internals. Some known bypasses were attempted but

were unsuccessful. Additionally, at the time of the analysis, no

firmware was available to download from the Annke website.

In order to gain complete access to the Annke NVR, we

decided to dump the firmware directly from the flash

memory via SPI. As a matter of fact, the flash memory in use

by the device proved to be a Macronix MXIC MX25L12835F,

which has pins big enough for micro grabbers to connect

steadily and is supported by the well-known flash memory

tool Flashrom. Section 2.3 of this document describes the

technique used.

Figure 30 - Annke N48PBB restricted shell.

31
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

This allowed us to obtain a firmware image that binwalk

could successfully analyze. Figure 31 shows the content of

the CramFS filesystem extracted from the firmware image.

In order to modify the firmware and remove the protected

shell, an injection of ad-hoc lines in the start.sh script seemed

to be the best option. We determined through publicly

available information from the community and confirmed

with tests that it is executed at each device booting process.

Similar to Dahua, this file, as well as many others on the

firmware, was encrypted by Annke to protect against at-

rest modifications. However, Annke is known to unofficially

resell Hikvision devices under their name as an OEM,9 and

further research revealed that most Hikvision devices used

to adopt an identical encryption key and mechanism, which

are known to the community. The hikpack tool (developed

by the user “montecrypto”10) successfully decrypted and

re-encrypted the files. Option -t k51 was used, as it was

the latest Hikvision NVR supported by this tool, and it

experimentally proved to be correct.

Figure 31 - Listing of the CramFS filesystem content

Figure 32 - Portions of the decrypted start.sh startup script.

32
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

The script was modified in order to replace the original

/bin/psh with another executable script file called

busybox ash. Then, it was re-encrypted by using the

hikpack tool.

Unfortunately, the results were still insufficient: in addition

to encrypting files, further analyses determined that Annke

protects their integrity by comparing the computed MD5

hash of each file in the flash memory at firmware boot

time with the one stored in the new_10.bin file, which is

also encrypted. Fortunately, the encryption scheme was

the same one used to encrypt the start.sh file; thus, by

replicating the steps we used on the start.sh file on the

new_10.bin file, it was possible to update the MD5 hash of

the startup script in order to pass the validation process.

In order to obtain a newly working firmware, the CramFS

filesystem was rebuilt by invoking the mkfs.cramfs

command and rewritten on the firmware image, replacing

the previous filesystem. After reflashing the device memory

with the new firmware image, we obtained unrestricted

access to the device.

Figure 33 - Portions of the decrypted new_10.bin file.

Figure 34 - Unrestricted SSH access to the device.

33
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

3. The Problem of Firmware Observability

Inspections of the running processes revealed that

most functionalities of the device are handled by the

/home/app/exec/master binary. However, the first attempt

to debug the binary by attaching a statically-compiled

gdbserver was ineffective. This is due to the presence of

a watchdog, monitoring the status of the process and

triggering a device reboot in case of needs.

Luckily, the results of the start.sh startup script contained

a debugging branch in an if-else statement with the

exact command necessary to disable it. By invoking the

command highlighted in Figure 35, it was finally possible to

attach a gdbserver and fully debug the executable.

Figure 35 - Watchdog-disabling code in the decrypted start.sh startup script.

Figure 36 - Debugging session of master binary in IDA Pro.

34
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

4. The Software Attack Surface
4.1 Introduction

After getting full access to a device’s firmware and

deploying it to a test network, it’s finally time to decompose

its attack surface and assess its security posture. Having a

remote debugger onboard the device considerably speeds

up the process of analyzing each specific target service.

Nevertheless, when debugging a target is not an option,

it’s still possible to gather a thorough understanding of the

device through static analysis and black box interaction.

An IP surveillance system has a minimum set of three logical

services which are required to perform its basic tasks.

The first concerns management interfaces, which for on-

premises installations are typically exposed through a web

application running on the devices. Cloud solutions are

instead managed through the provider’s SaaS (software as

a service) platform interface.

The second service determines how the audio/video stream

is transferred from the producers of the data, the cameras,

to the device that provides the storage, the network video

recorder. In the case of a cloud surveillance system, the

camera has an internal memory that holds the real-time

recording until it’s later transferred to the SaaS platform.

The third type of basic service concerns how recordings

are eventually accessed. This could be achieved through

an application interacting with an NVR through a

specific protocol on the same network. Some software

stacks instead provide the recordings via the same web

application used to manage the device.

An additional feature is the possibility of streaming the audio/

video content through the internet with P2P (peer-to-peer),

which in this context should not be confused with the concept

of peer-to-peer as implemented in protocols such as BitTorrent.

This feature was initially found on many consumer products

but has lately been making its way into corporate solutions.

Cloud-based systems, as expected, allow users to replay

the recordings through a SaaS platform, which is naturally

accessed through the internet.

In addition to these services, which are integral to the basic

functioning of a surveillance system, there are additional

features that some vendors might decide to implement, for

instance to simplify the management of a fleet of devices.

Discovery services fall into this category, as they expose

always-on network reachable code which, if exploited,

could allow an attacker to compromise devices at scale.

To assess the security posture of a surveillance system, the

first challenge is to understand which boundaries between

services can be the subject of an in-depth analysis and

which should not. An understanding of which parts of a

video surveillance system are implemented on the devices

and which functionalities rely instead on the cloud platform

managed by a provider is needed.

Of course, an auditor won’t have any constraints while

testing a device functionality, such as the login of a

management interface. If a specific feature relies instead on

a cloud service, the possible ramifications of the activities

must be carefully assessed before beginning the process.

Let’s suppose that an auditor is testing a video surveillance

system with an on-premises NVR that automatically backs

up the recordings to a cloud platform managed by the

vendor. One of the tests might involve setting a description

for a specific recording to particular values, with the goal

of testing the on-device web interface for the presence of

Cross-Site Scripting (XSS) vulnerabilities. If this malicious

description is then reflected in the cloud backup system,

This chapter focuses on the most

common software attack surfaces

found in IP surveillance systems:

management interfaces, services that

support remote applications, P2P,

cloud video surveillance systems, and

discovery services.

35
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

4. The Software Attack Surface

the auditor might accidentally trigger a vulnerability on a

vendor-managed system.

If not agreed upon and discussed in advance with the

vendor, this sort of test involving cloud platforms might fall

somewhere between being tolerated to being considered

unacceptable. If the goal of an asset owner is to understand

the overall posture of a system including its cloud features,

prior discussions should be held with the vendor. Any

company taking security seriously is in fact already

performing internal audits periodically, and likely already

has a process in place to inform customers about its security

process. After establishing a contact, an asset owner can

then decide if the information provided is enough or can

negotiate further assessments with the vendor.

Let’s now dive into specific instances of the aforementioned

attack surfaces and discuss some security issues that emerge.

4.2.1 Web Management Interface

Like the majority of modern IoT devices, among the

management services exposed by a generic IP video

surveillance system, the web interface is undoubtedly one

of the most commonly available and utilized. This is largely

because it can be interacted with from virtually any client,

without needing to install vendor-specific software.

The presence of a web channel, on the other hand, means

that design and development of even apparently simple

devices must take web vulnerabilities into account. This

applies to the entire range of web vulnerabilities that

IT administrators have come to know over the years on

complex enterprise web applications.

Now more than ever, the risk of a web application attack

cannot be ignored. According to the Verizon’s 2021 Data

Breach Investigation Report, web application attacks are

the second most utilized pattern in breaches or incidents

against companies.11 Barracuda’s The State of Application

Security in 2021 report reinforces this concept, stating that,

on average, organizations were successfully breached twice

in the period from mid-2020 to mid-2021 as a direct result of

an application vulnerability.12

The architecture of a generic web application running

on an embedded device can be as complex as that of an

enterprise web application. Figure 37 shows a sample

scheme which outlines its tiers.

Figure 37 - Sample web application architecture of an embedded device.

HTTP,
Websocket

Client-side
Application

(HTML + JavaScript)

Web
Server

(Apache httpd,
lighttpd)

Application
Server

(single custom binary,
CGI-bin, lua)

Database
Server

(SQLite, PostgreSQL,
MySQL)

Client Server

4.2 Management Interfaces

36
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

4. The Software Attack Surface

All these tiers need to be thoroughly inspected for

vulnerabilities, as web application flaws can hide in any of

them. These are only few examples of the possible security

bugs which may be found in an embedded web application:

	y A DOM-based XSS vulnerability in the client-side

application, due to insufficient escaping of user input by

the JavaScript code before being rendered in the page;

	y A Cryptographic Failure in the web server, because of

the support of obsolete, weak, or insecure ciphers in the

configuration of TLS;

	y A Cross-site WebSocket Hijacking flaw, caused by the

application server code lacking verification of anti-CSRF

tokens and only checking the session cookies before

conceding access to resources through WebSocket;

	y Excessive Privileges granted to the DB user of

the application, as a result of a database server

misconfiguration.

Besides the well-known range of enterprise web

applications flaws, it must be considered that embedded

web applications may hide another range of vulnerabilities,

i.e. memory corruption bugs. As a matter of fact, whereas

enterprise application servers usually interpret server pages

which are almost always written in memory-safe languages,

embedded application servers are often made up of a

single, or multiple, C/C++ compiled binaries.

This necessity stems from the resource constraints which

embedded devices frequently need to satisfy, for instance

in terms of power consumption or production costs. This

implies that any query string parameter, HTTP header

value, or body parameter, if not thoroughly validated by the

application server, can lead to a memory corruption bug

and, in the worst cases, result in the direct execution of

code in the context of the application server process.

Consider, for instance, CVE-2021-32941, caused by a

memory corruption issue found on the Annke N48PBB

NVR. As a matter of fact, the Annke N48PBB is exactly one

of the aforementioned devices whose application server is

implemented as a single, C/C++ compiled binary.

This vulnerability is due to a stack-based buffer overflow

found in the playback search functionality. The functionality

is accessible to all authenticated users by default, due

to the usage of a sscanf function configured to write an

improperly validated HTTP body parameter into a limited-

size buffer on the stack. In Figure 38, the format string is

highlighted in red, the buffer address in orange, and the

return address of the function in blue. Additionally, no

Figure 38 - CVE-2021-32941.

https://nvd.nist.gov/vuln/detail/CVE-2021-32941

37
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

4. The Software Attack Surface

canaries are verified prior to performing the jump to the

address, and a quick look at the output of “ps” confirms that

the binary runs with root privileges on the device.

The final outcome of the memory corruption is a

fully-fledged Remote Code Execution (RCE) with root

privileges that, if exploited by a malicious operator or user,

would result in their Elevation of Privilege (EoP) and full

compromise of the system.13

When chained together, web application flaws can cause

even more severe consequences to the security of a

system. An example is given again by the just described

Annke RCE. By itself, the stack-based buffer overflow

causes an already significant impact to the security of the

system, as low-privileged users may abuse it to obtain

complete control of the device.

However, the same endpoint was also unprotected against

CSRF attacks. By chaining these vulnerabilities together,

a remarkably powerful attack primitive is obtained. An

unauthenticated, external hacker is able to execute

arbitrary code with root privileges on the device itself by

convincing an administrator, operator, or user to browse a

specifically crafted webpage while simultaneously logged

in to the web interface of the device.

4.2.2 Remote Console

IP video surveillance devices sometimes offer remote

console management interfaces, in addition to the

previously discussed web-based option. This functionality

is typically exposed through an SSH server, although

sometimes even Telnet might be available.

There are two types of security issues that could affect

these interfaces. The first concerns the implementation of

the protocol itself. Embedded devices are seldom deployed

with servers customized by the vendor to limit the actions

of an authenticated users. Although vulnerabilities in

relatively simple protocols such as telnet must not be

factored out a priori, most of the focus should be devoted to

the customizations.

A second and likely the most important security issue is

credentials management. This issue emerges regularly

from security assessments of remote console services.

Hardcoded credentials are still found on a surprisingly

regular basis, and sometimes remote access is configured

to accept a key set by the vendor that cannot be managed

by the end user. Before committing to a specific solution,

asset owners should understand whether the devices

under analysis have these insecure settings.

The recordings stored in an NVR are generally made

available in a few ways. The first is through the web

management application, discussed in section 4.2.1. The

second method involves a desktop or mobile application

leveraging a dedicated service running on the NVR.

These services are sometimes implemented with

proprietary protocols which at the very least provide a login

process, in addition to serving content to the requesting

application. This attack surface is exposed on the local

network. Particular attention should be paid not only to

understanding the potential exposure of the credentials,

but also to assessing the security of the audio/video

streams in transit.

ONVIF is instead an open standard created to foster the

interoperability between IP video surveillance products

manufactured by different vendors. It defines a series of

profiles addressing several features such as authentication

and audio/video streaming, as well as (replace the comma

with "and"), as well as device discovery and configuration.14

By virtue of being fairly broad, ONVIF touches several

4.3 Services Supporting Remote Applications

38
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

4. The Software Attack Surface

attack surfaces, including management interfaces, remote

applications, P2P, cloud video surveillance, and discovery

services, which we discuss in this white paper.

An ONVIF compliant device will define the specific profiles that

were implemented. Each feature will then behave according to

the standard. For instance, streaming can be achieved through

the RTSP protocol and vendors might chose to rely on known

software components. Our suggestion when auditing an

ONVIF target is to first identify the different pieces and then

focus the attention on those that are custom to the vendor and

not borrowed, for example, from open-source projects.

4.3.1 Dahua DVRIP

DVRIP is a proprietary protocol implemented by Dahua

Technology in its devices to support desktop and mobile

applications, such as SmartPSS. In 2020, a security researcher

who goes by the moniker “Bashis” released a proof-of-

concept capable of extracting in clear the credentials

received from a DVRIP application.15 The vulnerability tracked

with CVE-2019-9682 is a perfect example of the issues

commonly found in this type of protocol.

Figure 39 - CVE-2019-9682.

Owners of a typical on-premise video surveillance solution

seldom need to access the recording remotely through the

internet. The usual solution to this requirement involves

setting up a remote access solution, such as a VPN, and

then accessing the NVR as if it were deployed on the local

network relative to the client.

Peer-to-Peer (P2P), in the context of security cameras, refers

to a functionality that allows a client to access audio/video

streams transparently through the internet. This is achieved

without configuring a firewall with a set of techniques broadly

called “hole punching”. The presence of an internet reachable

node called a P2P Server is crucial to this process. The P2P

Server acts as a mediator, used by the client application and

the NVR to establish bi-directional communication.

There are several proprietary implementations of this type

of protocol, but in general the NVR has to act first and

communicate its UID to the P2P Server, which univocally

identifies a device within a P2P network, in addition to its IP/

UDP port pair. The client will then be able to contact the P2P

Server and ask the IP/UDP port pair of a given UID. Depending

on a series of factors, the client might finally be able to

authenticate directly with the NVR and access the recordings.

Other times the whole communication is mediated by the

P2P Server, which effectively acts as a man in the middle.

A P2P system exposes several internet reachable attack

surfaces, mostly through the P2P Server.

From the point of view of an asset owner, a P2P Server

represents a possible entry point within an internal

4.4 P2P

https://nvd.nist.gov/vuln/detail/CVE-2019-9682

39
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

4. The Software Attack Surface

network.16 An attacker with knowledge of a UID can start

hitting a device through the login process. UIDs were

found to be enumerable in some implementations, with

attackers consequently being able to start a bruteforce of

the credentials.

Another potential vulnerability consists of having

attackers impersonate an NVR with the goal of receiving

the credentials from a client. In this scenario, malicious

operators connect to the P2P Server advertising themselves

as the proper NVR for a specific UID. A client looking for the

matching UID will then provide the correct credentials to

the attackers, who can later access the NVR successfully.

A further element to assess is the security of the audio/

video streams as they traverse the internet. Nozomi

Networks Labs has found vulnerabilities in the way two

vendors implement this very feature.

4.4.1 Reolink P2P Vulnerabilities

Broadly speaking, a P2P protocol is composed of two logical

parts. The first concerns the synchronization between

a client, the P2P Server and an NVR, where for instance

the client gathers the list of available recordings and then

requests a specific audio/video stream. The second is about

streaming the actual content of a recording.

In the Reolink implementation we found two separate

vulnerabilities, one in each “section” of the protocol.17

Reolink uses an xml-based text protocol to exchange

communications between actors in the P2P protocol. The

vulnerability, tracked by CVE-2020-25173, is about the

usage of a single hardcoded key to encrypt the traffic.

This means that an attacker with the knowledge of this

key is effectively capable of recovering the cleartext of the

communication. This is particularly worrisome because

at the time of our analysis the complete credentials were

transferred in clear, protected only by the hardcoded key.

The audio/video stream is instead sent in clear and by analyzing

the UDP protocol it was possible to reconstruct the recording.

This second security issue is identified by CVE-2020-25169.

4.4.2 ThroughTek P2P Vulnerabilities

ThroughTek is a company that develops a P2P implementation,

called “Kalay,” that is then shipped with several other

vendors' products, such as Hikvision and Swann.

Earlier this year, we analyzed the network traffic generated

by a Swann device during a P2P session. With the help of

a debugger we found the library containing the protocol

implementation and from there located the function

containing the fixed key through which network packets

are obfuscated.18

Although there is a binary rather than text-based protocol

in the case of ThroughTek, the vulnerability is of the same

type as in the Reolink implementation. CVE-2021-32934

was assigned by CISA to track this vulnerability. While

it’s virtually impossible for an independent auditor to

assess the actual number of devices affected, it must be

noted that the vendor managing the platform, such as

ThroughTek, has a complete understanding of the problem.

Mandiant recently disclosed a further security issue

affecting the ThroughTek P2P protocol, identified with

CVE-2021-28372.19 This vulnerability allows an attacker to

impersonate an NVR with the prerequisite of knowing a

device UID, as we describe at the beginning of section 4.4.

4.4.3 P2P Deployment in Corporate Networks

As we have explained, P2P exposes a device deployed

within a network to the internet, through a P2P server

managed by an unproven third party. The biggest problem

of this design lies not in allowing an attacker to access the

recordings of a video surveillance system, but rather in the

possibility of the target device being compromised by a

remote malicious actor.

For this reason, P2P should not be deployed in corporate

networks. Asset owners should take the necessary steps

to verify that their video surveillance systems don’t contain

this feature.

https://nvd.nist.gov/vuln/detail/CVE-2020-25173
https://nvd.nist.gov/vuln/detail/CVE-2020-25169
https://nvd.nist.gov/vuln/detail/CVE-2021-32934
https://nvd.nist.gov/vuln/detail/CVE-2021-28372

40
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

4. The Software Attack Surface

4.5 Cloud Video Surveillance

4.6 Discovery Services

Cloud video surveillance refers to all platforms where the role of

a traditional NVR is taken by a SaaS platform. Since the cameras

and the access controllers by design need to constantly reach

the cloud provider through the internet, the networks where

these devices are deployed tend to be designed with strong

security, for instance leveraging a Zero Trust approach.

As devices are mostly managed through the SaaS platform,

asset owners should focus on correctly managing the

credentials and audit the access to the platform, in addition

to carefully vetting the vendor. Removing the NVR from the

equation doesn’t mean that the devices being deployed

shouldn’t be tested for security vulnerabilities, as the

cameras receive remote commands from the SaaS platform.

The most notable incident involving cloud video surveillance

was the breach that affected Verkada in March 2021.20

Attackers gained initial access to an internet-exposed

server used by the support team. From that system they

managed to access both the recordings of customers as

well as devices deployed on the field.

Deploying a cloud video surveillance system requires a

robust network design, along with a network observability

solution that is capable of profiling device behavior.

A big advantage of having a cloud platform to manage

a fleet of devices concerns firmware updates. Updating

firmware at scale is often a cumbersome process at which

vendors seldom excel. With a SaaS solution, the firmware

updates are available to be deployed as soon as they’re

released, dramatically reducing the time to patch.

Discovery services are used by NVRs or device manager

applications to automatically find, among the other assets,

cameras and access controllers deployed within a network.

These services come in two flavors – a vendor either designs

a custom protocol or relies on a standard one such as WS-

Discovery or UPnP, which are part of ONVIF.

Some products are shipped with both options. The custom

protocol is typically preferred in a network populated only by

devices and applications of a given vendor, while standard

protocols are used in an heterogenous environment.

4.6.1 Hikvision

Search Active Device Protocol (SADP) is an XML-based

discovery protocol developed by Hikvision, a leading

surveillance camera vendor, and shared by other OEMs.

Since this protocol is implemented in desktop applications,

security researchers can start their investigation simply by

analyzing the network traffic and a Windows DLL.

Figure 40 shows the probe packet sent by the application

to a multicast IPv4 address as seen on the network.

Figure 40 - Probe packet sent by SADP.

41
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

4. The Software Attack Surface

This instead is the function responsible for creating the

probe, aptly named SendInquiryPacket (Figure 41).

Keep in mind that there’s no guarantee that the

implementation found in the firmware of a device

corresponds to the one found in the desktop application.

Figure 41 - SendInquiryPacket.

42
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

4. The Software Attack Surface

Figure 42 - AFL-style fuzzer output.

4.6.2 Axis

UPnP is among the set of discovery protocols supported by

Axis devices. More specifically the implementation shipped

in the firmware comes from the popular open-source

project libupnp.21

From a security assessment perspective, this means that in

addition to the usual binary analysis techniques that we’ve

explored throughout this white paper, researchers can also

leverage tools that require the source code such as AFL-

style fuzzers.

43
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

5. Conclusion
One of the main theses presented is that access to

unencrypted firmware images is paramount in the

current landscape, where the danger of supply chain

vulnerabilities is fully understood and potentially

leveraged by malicious actors.

Though images are not always easily accessible, the

hardware analysis techniques presented here can be

used to extract the firmware from a device memory and

to interact with its bootloader. We also demonstrate

what it takes to analyze the actual executables after

gaining access to the image.

Finally, we focused on decomposing common IP

surveillance attack surfaces and touched upon specific

vulnerabilities affecting different services. Given their

prevalence and growing use of these systems, it’s

important to understand their security posture before

deploying them on a network.	

This white paper provides security

analysts and researchers with a

technical framework that helps

assess the security posture of an

IP video surveillance system and

its vendor. This approach can be

clearly abstracted and used with

other complex systems that involve

embedded devices and firmware.

44
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

6. References and Further Reading

1.	 “Size of the global video surveillance market between 2016 and 2025,” Alsop, T., Statista, October 22, 2020.

2.	 “A World With a Billion Cameras Watching You Is Just Around the Corner,” Lin L., Purnell, N., The Wall Street Journal, December 6, 2019.

3.	 “Ripple20 – 19 Zero-Day Vulnerabilities Amplified by the Supply Chain,” JSOF, June 2020.

4.	 “CVE-2021-3781,” Ghostscript, September 9, 2021.

5.	 “Supported Hardware,” Flashrom, December 7, 2020.

6.	 “Attify Badge,” adi0x90, February 2, 2021.

7.	 “Firmware Releases for All Our Supported Products,” Axis Communications.

8.	 “Dahua Product Security White Paper,” Dahua Technology, 2020.

9.	 “Hikvision OEM Directory,” IPVM, June 3, 2021.

10.	 “[MCR] Hikvision Packer/Unpacker for 5.3.x and Newer Firmware,” Montecrypto, December 23, 2016.

11.	 “Data Breach Investigations Report,” Verizon, 2021.

12.	 “Report: The State of Application Security in 2021,” Campbell, A., Barracuda, May 18, 2021.

13.	 “New Annke Vulnerability Shows Risks of IoT Security Camera Systems,” Nozomi Networks Labs, August 26, 2021.

14.	 “ONVIFTM Streaming Specification, Version 2.2,” ONVIF, May 2012.

15.	 “Dahua-3DES-IMOU-PoC.py,” bashis, May 9, 2020.

16.	 “Security Cameras Vulnerable to Hijacking,” Marrapese, P., 2020.

17.	 “New Reolink P2P Vulnerabilities Show IoT Security Camera Risks,” Di Pinto, A., January 19, 2021.

18.	 “New IoT Security Risk: Throughtek P2P Supply Chain Vulnerability,” Nozomi Networks Labs, June 15, 2021.

19.	 “Mandiant Discloses Critical Vulnerability Affecting Millions of IoT Devices,” Valletta, J., Barzdukas, E., Franke, D., Mandiant, August 17, 2021.

20.	 “Defending Against IoT Security Camera Hacks Like Verkada,” Di Pinto, A., Nozomi Networks, March 12, 2021.

21.	 “UPnP,” Github.

Further Reading

	y “APT in a World of Rising Interdependence,” Geer, D., NSA, March 26, 2014.

	y “BraveStarr – A Fedora 31 netkit telnetd remote exploit,” Huizer, R., February 28, 2020.

	y “Mindshare: Dealing With Encrypted Router Firmware,” Lee, V., February 6, 2021.

	y “This is Why People Fear the ‘Internet of Things,’” KrebsonSecurity, February 18, 2016.

https://www.statista.com/statistics/864838/video-surveillance-market-size-worldwide/
https://www.wsj.com/articles/a-billion-surveillance-cameras-forecast-to-be-watching-within-two-years-11575565402
https://www.jsof-tech.com/disclosures/ripple20/
https://ghostscript.com/blog/CVE-2021-3781.html
https://www.flashrom.org/Supported_hardware
https://github.com/attify/attify-badge
https://www.axis.com/support/firmware
https://www.dahuasecurity.com/asset/upload/uploads/soft/20200401/Dahua-Product-Security-White-Paper-V2.0.pdf
https://ipvm.com/reports/hik-oems-dir
https://ipcamtalk.com/threads/mcr-hikvision-packer-unpacker-for-5-3-x-and-newer-firmware.15710/
https://www.verizon.com/business/resources/reports/dbir/2021/masters-guide/
https://blog.barracuda.com/2021/05/18/report-the-state-of-application-security-in-2021/
https://www.nozominetworks.com/blog/new-annke-vulnerability-shows-risks-of-iot-security-camera-systems/
https://www.onvif.org/specs/stream/ONVIF-Streaming-Spec-v220.pdf
https://github.com/mcw0/PoC/blob/master/Dahua-3DES-IMOU-PoC.py
https://hacked.camera/
https://www.nozominetworks.com/blog/new-reolink-p2p-vulnerabilities-show-iot-security-camera-risks/
https://www.nozominetworks.com/blog/new-iot-security-risk-throughtek-p2p-supply-chain-vulnerability/
https://web.archive.org/web/20210818060414/https:/www.fireeye.com/blog/threat-research/2021/08/mandiant-discloses-critical-vulnerability-affecting-iot-devices.html
https://www.nozominetworks.com/blog/defending-against-iot-security-camera-hacks-like-verkada/
https://github.com/pupnp/pupnp
http://geer.tinho.net/geer.nsa.26iii14.txt
https://appgateresearch.blogspot.com/2020/02/bravestarr-fedora-31-netkit-telnetd_28.html
https://www.zerodayinitiative.com/blog/2020/2/6/mindshare-dealing-with-encrypted-router-firmware
https://krebsonsecurity.com/2016/02/this-is-why-people-fear-the-internet-of-things/

45
WHITE PAPER

The S3CUREC4M Project: Vulnerability Research in Modern IP Video Surveillance Technologies

v

nozominetworks.com

© 2021 Nozomi Networks, Inc.

All Rights Reserved.

NN-WP-S3CUREC4M-8.5x11-001

v

Nozomi
Networks
The Leading Solution for
OT and IoT Security and Visibility
Nozomi Networks accelerates digital transformation by protecting the world’s

critical infrastructure, industrial and government organizations from cyber

threats. Our solution delivers exceptional network and asset visibility, threat

detection, and insights for OT and IoT environments. Customers rely on us to

minimize risk and complexity while maximizing operational resilience.

	1. Assessing the Security of Modern IP Video Surveillance Technologies
	1.1 Introduction
	1.2 Supply Chain Vulnerabilities on Embedded Devices
	1.3 Assessing Vendor Maturity

	2. Hardware Analysis and
Firmware Extraction Techniques
	2.1 Introduction
	2.2 Flash Memories Packages
	2.2 Flash Memories Packages
	2.4 Extracting Firmware from Devices that Don’t Support Flashrom
	2.5 Connecting to a UART Port
	2.6 JTAG Testing and Analysis

	3. The Problem of Firmware Observability
	3.1 Introduction
	3.2 Transparent Design: Axis Companion Recorder 4CH NVR
	3.3 Decrypting the Dahua Technology DHI-ASI7213X-T1 Face Recognition Access Controller
	3.4 From Zero to Debugger: Annke N48PBB NVR

	4. The Software Attack Surface
	4.1 Introduction
	4.2 Management Interfaces
	4.2.1 Web Management Interface
	4.2.2 Remote Console
	4.3 Services Supporting Remote Applications
	4.3.1 Dahua DVRIP
	4.4 P2P
	4.4.1 Reolink P2P Vulnerabilities
	4.4.2 ThroughTek P2P Vulnerabilities
	4.4.3 P2P Deployment in Corporate Networks
	4.5 Cloud Video Surveillance
	4.5.1 Discovery Services
	4.5.2 Hikvision
	4.5.3 Axis

	5. Conclusion
	6. References

